CASSETTE INTERFACE
Assembly, Checkout, and Theory

© Interactive Products Corporation, 1977

PolyMorphic Systems

• . ÷ . •

TABLE OF CONTENTS

		,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	Page
1.	Introd	uction	. 1
	1.1	Warranty	. 1
	1.2	Inspection	. 1
	1.3	Handling Precautions	. 2
	1.4	Soldering Tips	. 2
	1.5	Safety	. 3
	1.6	Diode Polarity	. 3
	1.7	Resistor Color Code, Capacitor Polarity Markings	. 4
	1.8	Loading Dual In-Line Packages	. 5
2.	Genera	l Information	. 6
	2.1	Recorder Model Recommendations	. 6
	2.2	Material	. 7
	2.3	Parts List and Check-Off	. 7
	2.3.1	BAG Ø	. 7
	2.3.2	Cassette Hardware	. 8
	2.3.3	BAG 1	. 8
	2.3.4	BAG 2	. 9
3.	Compone	ent Installation - Install DIP Sockets	. 9
	3.1	Install Resistors	10
	Fig.1-1	Assembly Drawing	11
	3.2	Install Capacitors	12
	3.3	Install Transistor	12
	3.4	Install Potentiometers	
	3.5	Install Connectors	
	3.6	Examine Board	
	3.7	Install Integrated Circuits	
	3.8	Circuit Power Up and Adjustment	
	_	Rear Panel Mounting	
	3.9	Device Address Selection and Installation	
		Byte Setup	
	3.9.1	Polyphase Setup	15

				Page
4.	Theory	of Ope	eration	18
	Fig 1b	Byte	Character Format	19
	Fig 2B	Byte	Timing Waveforms	21
	Fig 1D	Block	k Diagram	22
	4.7	Addre	ess Decoder	23
	4.2	Moto	r Control	24
	4.3	Mode	Selection	25
	4.4	Mult	iplexor	25
5.	Polyphas	se The	eory	26
	Fig 2A	Poly	phase Timing Waveforms	27
	Schemati	ic Dra	awing	30
	Appendix	κ A	Motor Control Circuitry	A1
	Appendix	к В	Recorder Operation	B1
	Appendix	k C	Logic Probe Schematic	C1
	Appendix	k D	Chip Pinouts	D1
	Appendix	κE	Small Dumper Program	E1

1 Introduction

PolyMorphic Systems is pleased to have your order for POLY 88 series equipment. We have endeavored to supply the most thoroughly tested and documented material on the market. The system is modular and Altair compatible, and is designed to accept nearly every peripheral device available. We ask you scan this manual before assembly.

POLY 88 modules are designed for ease of assembly, use and durability. If, however, after having read the manual, you have any doubt of your faith in the project please return the kit(s) to us, in original condition, for a full no-questions-asked refund.

1.1

WARRANTY

KITS: All parts and materials are warranted to be free of defects at the time of shipment. Defective parts will be replaced free of charge if returned to the factory within ten (10) days of receipt of delivery or upon written statement by purchaser that the unit was unassembled or untested for up to ninety (90) days due to circumstances beyond his control. Completed units returned under similar circumstances will be repaired at a labor cost of \$20/hour, with defective parts replaced free. Should the estimated cost of repair exceed 20% of the original cost of the unit, the customer will be notified prior to repair.

THE WARRANTY IS VOID IF THE KIT IS SOLDERED WITH CORROSIVE FLUX.

ASSEMBLED: The assembled units are fully warranted to be free of defects for ninety (90) days from the time of shipment. If they are found to be defective in this period they may be returned to the factory for repair or replacement free of charge (including return shipping),

1.2 Inspection

If your package has arrived in poor condition please inspect the contents for damage. The units are shipped in damage resistant containers. In the unlikely event of damage or breakage, please return the kit to us in the original container for replacement.

1.3 Handling precautions:

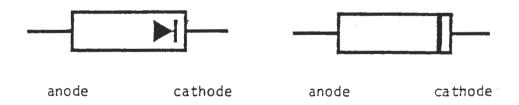
As with any sensitive MOS (metal oxide semiconductor) caution must be exercised to avoid damage to the chip. The most frequent problem is damage caused by static electricity. While handling the chips (Integrated Circuits) we recommend that cotton clothing be worn in preference to synthetic materials.

More importantly, these devices should never be handled by the leads. They should be handled only by the ends of the chips. Since they come packed to protect the leads, there is no reason to actually endanger the chip until it is time to install them in the IC sockets on the board.

1.4 Soldering tips:

- Use a soldering iron of 25 watts or less. Larger soldering tools such as soldering guns and bigger irons are too hot. The lower wattage irons do the job efficiently and reduce the risk of burning the printed-circuit board.
- Use a small, clean tip on the iron. Clean it after each use on a small piece of damp sponge.
- 3. Use the 60-40 rosin-core solder. This type is provided with your kit. Use the supplied solder or the smallest diameter available. Do not use acid-core solder or externally applied fluxes. <u>USE OF EXTERNAL FLUXES OR ACID CORE SOLDER VOIDS YOUR</u> WARRANTY.
- 4. To solder, first apply a light coat of solder to the tip of your iron. Place the tip against both the component lead and printed circuit juncture to be soldered. Add ample solder to the juncture of lead and printed circuit pad but not to the iron itself. The solder will melt when the unit to be soldered is sufficiently heated and will bond by forming a capillary film between the lead and pad.
- 5. Remove the solder after one or two seconds. The rosin will bubble (boil) out. Allow three to four bubbles then remove the iron. Do not keep the heat applied for more than ten seconds.

- 6. Solder bridges look very neat but are a constant source of trouble. Solder bridges are caused by an excess of solder being built up on one conductor and overflowing to another. Great care must be exercised to avoid the occurance of solder bridges. Use the minimum amount of solder possible. Inspect each IC socket and individual component after soldering. Solder bridges can be a constant source of trouble when boards of a high trace density are being assembled.
- 7. The best method of removing solder bridges is the use of a vacuum "solder-puller" available at most electronic supply houses. They are relatively inexpensive. The joint is heated and vacuum applied to the bridge. Another method is to remove the bridge with wick-type solder remover after heating the troublesome area.


Yet another assault on a solder bridge can be made by reheating the bridge with the iron and drawing or pulling the solder away until it is thin enough to be broken or cleaned with an X-acto knife or other keen tool.

8. Be careful not to burn through traces on the PC board.

1.5 SAFETY:

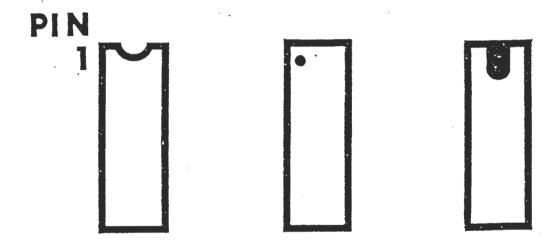
We strongly recommend that after a component has been soldered, the excess lead be cut only with a pliers attached to the free end. This method of trimming, while a bit awkward at first but prevents small pieces of lead from flying into the eyes. If you do not wish to follow this procedure, we recommend wearing safety glases.

1.6 DIODE POLARITY:

1.7 Resistor Color Code (Values in Ohms)

	1 S T	2 N D	3 R D	4 T H	
--	-------------	-------------	-------------	-------------	--

	1st Band	2nd Band	3rd Band			4th Band (Tolerance)
Black	0	0	x1		•:	
Brown	1	1	x10			
Red	2	2	x100			
Orange	3	3	x1000	or	x1K	
Yellow	4	4	x10,000	or	x10K	
Green	5	5	x100,000	or	x100K	
Blue	6	6	x1,000,000	or	xl meg	
Violet	7	7	x10,000,000	or	x10meg	-
Gray	8	8	x100.000.000	or	x100 meg	
White	9	9	x1,000,000,000	or	x1 giga	
Gold			x0.01		•	+ 5%
Silver			x0.1			+10%
No Band						+20%


Capacitor Polarity Markings

All tantalum and electrolytic capacitors must be oriented properly to prevent destruction. The positive terminal or lead is usually marked. The mark can be a plus sign (+), a dot or stripe down the side of the component nearest the positive lead. On larger "can" type electrolytic capacitors, the positive terminal is often marked by a red or white dot. Always trust the dot, not the markings on the can.

1.8 LOADING DUAL IN-LINE PACKAGES (DIP)

Most DIP have their leads slightly spread. They must be walked into the socket using the below mentioned procedure. We strongly urge that sockets be used for the installation of these integrated circuit packages because of the difficulty in installing them directly to the board. The use of sockets also relieves some of the damage hazard caused by static electricity.

Orient the device properly. Pin 1, always indicated by a notch on the assembly diagram, is sometimes indicated by an embossed dot instead of a notch on the IC itself. Refer to the drawing below for indication of pin 1. (Pins are counted counter-clockwise from pin 1.

To install a DIP into the socket, insert the pins on one side a very slight distance into the socket. Apply a slight sideways pressure on the pins of this side. Now, reverse the procedure. Bend the pins only until both sides begin to enter the socket holes.

Press the IC straight down until it seats in the socket. Use a gentle pressure in the center of a small chip or two pressure points of equidistant spacing on the larger units such as MCM6571A or 8212.

GENERAL INFORMATION

Here is your PolyMorphic Cassette Interface. It is a "minicard" which fits nicely in the backpanel of your Poly 88 system and operates through the serial port on the CPU board.

The PolyMorphic Systems Cassette Interface provides two recording techniques, Byte Standard and a special Polyphase. The Byte Standard is a technique which allows a great range of recorder quality, and is therefore the best for program exchange. However, Byte Standard is a relatively slow technique. It operates at 300 Baud (approx. 30 characters per second).

The Polyphase method allows a much faster rate but is not as tolerant to recorder quality. It operates at 2400 Baud (approx. 240 characters per second, 8 times faster than Byte Standard) which allows a much more satisfying system operation when used with a good quality recorder. It will read or write 1024 bytes in about 63 seconds compared to 52 seconds for the same amount in Byte. (The last figure includes allowance for format overhead, including inter-record gap, sync characters, block type, memory address, block length, etc. as described in detail in the description of the 4.0 monitor.) The interface is controlled by the System monitor and the dumper program.

2.1 IMPORTANT! We have used the following recorders with this interface:

Superscope	C101
Superscope	C102
Superscope	C103
Superscope	C104
Sears	799.21682501
Panansonic	RQ - 309DS & RQ - 413S
Sony	TC110B

Of these, only the Superscope models C103 and C104 are recommended for reliable Polyphase use. All tested models work reliably with the Byte mode. A minimal requirement for Byte use is a tone control.

2.2 MATERIAL

In addition to this manual, you should have the following bags of hardware -

Part No.	<u>Unit</u>
101101	Byte-Biphase Circuit Board
101102	Cassette Bag Ø
101103	Cassette Hardware (inside Bag 1)
101104	Cassette Bag 1
101105	Cassette Bag 2

2.3 Parts list and check-off sheet.

·Check the contents of each package against each list.

2.3.1 BAG Ø

Check	Quantity	Part Number	Description
()	1	8008	8-pin IC sockets
()	2	018014	14-pin IC sockets
()	4	018016	16-pin IC sockets
()	1	031086	74LS86
()	1 .	031257	74LS257
()	1	034227	8T20
()	1	034263	CD4013
()	1	034277	CD4027
() .	1	034520	96L02
()	1	034530	75453

2.3.2 Cassette Hardware

101103

Cassette Hardware

2	2-56 x 3/8" F. H. machine screw
2	#2 lock washer
.2	#2 hex nuts
3'	Solder
6"	#24 wire

2.3.3 BAG 1

Check	Quantity	Part Number	Description
()	1	012515	68pF capacitor
()	1	012545	0.001µF ceramic disc cap
()	1	012560	.01µF cap (mylar)
()	1	012562	0.01µF ceramic disc cap
()	1	012585	.047µF cap (mylar)
()	8	012600	$0.1\mu F/16V$ capacitors (ceramic)
()	1	017330	25-pin connector
()	1	012550	0.0047µF capacitor
()	1	017329	Hardware for connector
()	1	047202	20K single-turn trimpot
()	1	047205	100K single-turn trimpot
()	1	053519	$15\Omega_{\Psi}^{2}$ w carbon comp. resistor
()	2	053547	$220\Omega_4^2$ w carbon comp. resistor
()	14	053571	2200Ω⁄aw carbon comp. resistor
()	2	053573	2.7K ¼w carbon comp. resistor
()	2	053587	10K ¼w carbon comp. resistor

PolyMorphic	Systems	Byte/Biphase	e Cassette	Interface	۲,9
()	1	053591	15K ¼w	carbon comp.	•
()	3	053616	100K 14W	ear, comp. re	sistor
()	1	072185	2N5447 tr	ansistor (pnp)	
() .	1	079100	Ribbon Ca	ble (14 cond - 2	pluas)

2.3.4 BAG 2

() 1 101105 Small Dumper on cassette tape

3. Install DIP sockets:

Orient the PC board so that the word "TOP" is on the right side of the board.

According to figure 1-1 and the check-off list, install sockets on top of the PC board.

Install IC sockets

Check	Location	Component
()	IC1	16 pin socket for 8T2O
()	IC2	16 pin socket for 96L02
()	IC3	14 pin socket for 4013
()	IC4	16 pin socket for 74LS257
()	IC5	14 pin socket for 74LS86
()	IC6	16 pin socket for 4027
()	IC7	8 pin socket for 75453

3.1 Install resistors:

Number	Description	Color
1	15Ω $_{aw}$	brown-green-black
2	2.7K \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	red-violet-red
3	220Ω ¹aw	red-red-brown
4	2.2K aw	red-red-red
5	2.2K aw	red-red-red
6	15K ½w	brown-green-orange
7	220s2 Jaw	red-red-brown
8	2.2K law	red-red-red
9	2.7K law	red-violet-red
10	2.2K ¹ aw	red-red-red
11	2.2K w	red-red-red
12	2.2K law	red-red-red
13	100K 3W	brown-black-yellow
14	10K 12W	brown-black-orange
15	10K 12W	brown-black-orange
16	2.2K aw	red-red-red
17	2.2K aw	red-red-red
18	100K law	brown-black-yellow
19	100K ¹aw	brown-black-yellow
20	2.2K ¹ aw	red-red-red
21	2.2K w	red-red-red
22	2.2K ¹ aw	red-red-red
23	2.2K 14W	red-red-red
24	2.2K 4w	red-red-red
25	2.2K 4w	red-red-red

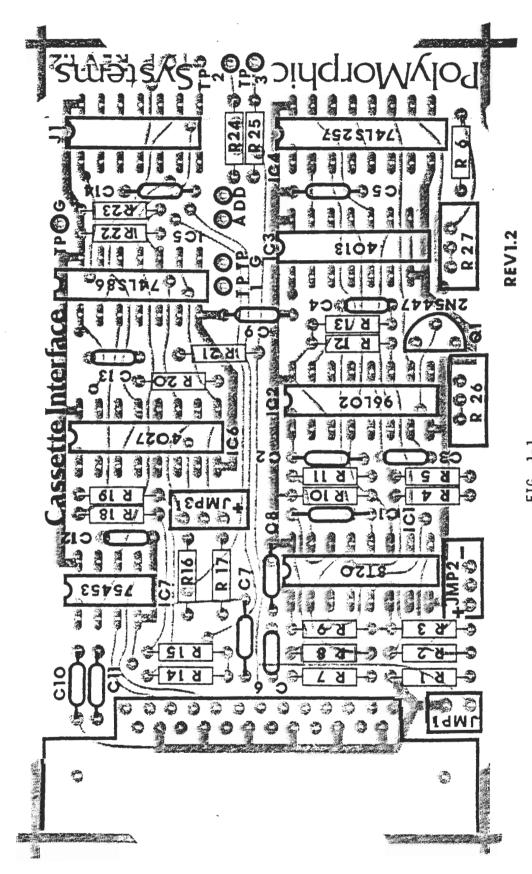


FIG. 1-1 ASSEMBLY DRAWING

3.2 Install capacitors;

Number	Description	MYLAR
1	.047µF 100V mylar	
2	.01µF 100V mylar	
3	.001µF ceramic disc	
4	68pF ceramic disc	
5-9	.lµF 16V ceramic disc	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
10	.0047µF 100V ceramic disc	
11	.lµF 16V ceramic disc	CERAMIC
12	.01µF 100V ceramic disc	
13-14	.lµF 16V ceramic disc	•

3.3 Install 2N5447 transistor following the assembly drawing (fig. 1-1)

3.4 Install pontentiometers

Orient the potentiometers so that the screw adjustments are toward the outside of the board.

R26	20K
R27	100K

3.5 Install connectors.

Mount the 25 pin connector on the top of the card. You will probably need a thin, stiff tool such as an awl or screwdriver or needlenose pliers to align each pin with its hole in the PC card. Begin at one end and work toward the other, partially inserting each pin. Do not force the connector into position; it will slide into place with slight pressure if all 25 pins are oriented properly. Fasten the connector to the card with 2-56 screws, nuts, and lockwashers. Solder the pins.

Orient the card so that the 25 pin "D" connector is on the left edge. Insert the cable plug, on the component side of the board, so that the colored wire (usually red) is at the top, and the cable extends

to the right. Notice that pin 1 of the plug is in the upper left hand corner. Solder the pins.

3.6 Examine the board very carefully for:

solder bridges unsoldered joints cold solder joints

3. 7 Install integrated circuits. Note: The ICs marked * are MOS, and can sometimes be damaged by the voltages present on your hands. Do not touch the pins on these chips any more than is absolutely necessary.

Check	Layout Position #	Description
() .	ICT	8T2Ø bidirectional one shot
()	IC2	96LØ2 retriggerable one shot
()	IC3*	4013 D flip flop
()	IC4	74LS257 QUAD 2-1 Multiplexor
()	IC5	74LS86 exclusive OR gate
()	IC6*	4027 J-K flip flop
()	IC7	75453 OR gate

3. 8 Circuit power up and adjustment:

First use an ohmmeter to check +5V and -5V to ground. Pin 14 to pin 10 of the ribbon cable should give a reading of approximately 1000Ω in the forward direction and 450Ω in the reverse. Pin 11 to pin 10 should give 1000Ω forward and $20K\Omega$ reverse. These are typical values and will vary between different ohmmeters. Connect the ribbon cable to the serial port; make sure pin one is down when installing the DIP plug in the CPU board. Check for +5V $\pm 0.25V$ on the highest numbered pin (8, 14 or 16) on each of the IC's. Check for -5V \pm 0.25V on ICl pin 4.

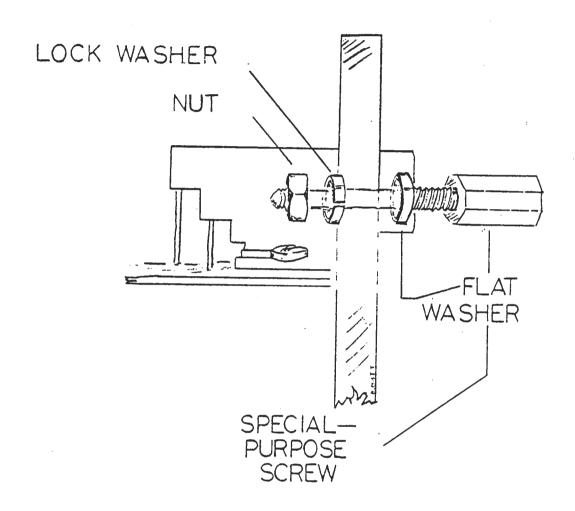


FIG. 1-2

3.9 Device Address Selection and Installation

As supplied, the cassette board is set up to be serial device #Ø. Device Ø is used as the bootstrap loader device when the Poly 88 system is powered up.

If this is your second cassette board the address should be set to

1. This is accomplished by breaking the printed trace connecting the
two pads labeled ADD on the assembly drawing. The trace is located on the
bottom side of the PC card, and may be easily cut with an X-acto knife.

Using the hardware supplied, (P/N 017329) install the card in the cassette connector cutout (above transformer) on the back panel of the Poly 88 (see Fig. 1-2). Then plug the free end of the ribbon cable into one of the two serial I/O connectors in the upper right hand corner of the CPU card. Make sure that pin 1 of the DIP plug corresponds to pin 1 of the socket. If installed backwards the cassette card may be destroyed when power is applied to the system.

3.9.0 Byte Setup.

For setup the Byte/Polyphase cassette card you will need a logic probe, a voltmeter, three clip leads and a 1-10uF capacitor.

Make sure JMP1 is shorted by a trace on the bottom of the board. Temporarily connect a 1-10uF capacitor from pin 1 of IC6 (+ end) to pin 5 of IC1 (- end). Connect a voltmeter (6-10V scale) to test point 1 and ground (TPG). Adjust pot R27 fully clockwise. Check test point 1 with a logic probe It should be continuously high. Now measure the voltage on TP1. It should be 2 and 5 volts. Now multiply this value by 3/4 for use in the next step.

Connect a temporary jumper between IC5 and pin 9 and ground (TPG). Set pot R27 to give the voltage previously calculated on TP1. With a logic probe check the RXC- is low with positive pulses. This gives you 75% duty cycle at TP1.

3.9.1 Polyphase Setup

Remove the jumper from IC5 pin 9 to ground. Remove the short on JMP1 (cut the trace on the bottom of the board). Make sure the

power is still off and carefully remove the 8T20 from its socket. Turn on the power and press P on the keyboard. This will enable the cassette board. Measure the voltage at TP3. It should be between 2 and 5 volts. Multiply the measured value by $\frac{1}{4}$. This value will be needed later in the setup procedure. Turn off the power and reinsert the 8T20.

Load the following program* into onboard RAM at ØDØØ:

ØDØØ 2118ØD BIPH: LXI TISR ØDØ3 2216ØC SHLD SRA4 ØDØ6 CDADØ2 CALL SETUP ØDØ9 Ø5 DB ØØ5H ØDØA AA DB ØAAH ØDØB 4Ø DB Ø4ØH ØDØD E6 DB ØE6H ØDØF ØØ DB ØE6H ØD1Ø 3E21 MVI A,Ø21H ØD12 D3Ø1 OUT Ø1 ØD14 76 LOOP: HLT ØD15 C314ØD JMP LOOP ØD18 3E 55 TISR: MVI A,55H ØD1A D3ØØ OUT Ø OD1C: C364ØØ JMP IORET	ADDR	DATA		PROGRAM	
ØDØ6 CDADØ2 CALL SETUP ØDØ9 Ø5 DB ØØ5H ØDØA AA DB ØAAH ØDØB 4Ø DB Ø4ØH ØDØD ØC DB ØØCH ØDØD E6 DB ØE6H ØDØF ØØ DB ØØH ØD1Ø 3E21 MVI A,021H ØD12 D3Ø1 OUT Ø1 ØD14 76 LOOP: HLT ØD15 C314ØD JMP LOOP ØD18 3E 55 TISR: MVI A,55H ØD1A D3ØØ OUT Ø	ØDØØ	211800	BIPH:	LXI	TISR
ØDØ9 Ø5 DB ØØ5H ØDØA AA DB ØAAH ØDØB 4Ø DB Ø4ØH ØDØC DB ØØCH ØDØD E6 DB ØE6H ØPØE E6 DB ØE6H ØDØF ØØ DB ØØØH ØD1Ø 3E21 MVI A,Ø21H ØD12 D3Ø1 OUT Ø1 ØD14 76 LOOP: HLT ØD15 C314ØD JMP LOOP ØD18 3E 55 TISR: MVI A,55H ØD1A D3ØØ OUT Ø	ØDØ3	2216ØC		SHLD	SRA4
ØDØA AA DB ØAAH ØDØB 4Ø DB Ø4ØH ØDØC DB ØØCH ØDØD E6 DB ØE6H ØDØF ØØ DB ØØH ØD1Ø 3E21 MVI A,021H ØD12 D3Ø1 OUT Ø1 ØD14 76 LOOP: HLT ØD15 C314ØD JMP LOOP ØD18 3E 55 TISR: MVI A,55H ØD1A D3ØØ OUT Ø	ØDØ6	CDADØ2		CALL	SETUP
0D0B 4Ø DB Ø4ØH ØIØC DB ØØCH ØDØD E6 DB ØE6H ØPØE E6 DB ØE6H ØDØF ØØ DB ØØØH ØD1Ø 3E21 MVI A,Ø21H ØD12 D3Ø1 OUT Ø1 ØD14 76 LOOP: HLT ØD15 C314ØD JMP LOOP ØD18 3E 55 TISR: MVI A,55H ØD1A D3ØØ OUT Ø	ØDØ9	Ø 5		DB	ØØ5H
ØINØC ØC DB ØØCH ØDØD E6 DB ØE6H ØPØE E6 DB ØE6H ØDØF ØØ DB ØØØH ØDIØ 3E2I MVI A,Ø2IH ØDI2 D3ØI OUT ØI ØDI4 76 LOOP: HLT ØDI5 C314ØD JMP LOOP ØDI8 3E 55 TISR: MVI A,55H ØDIA D3ØØ OUT Ø	ØDØA	AA		DB	ØAAH
ØDØD E6 DB ØE6H ØPØE E6 DB ØE6H ØDØF ØØ DB ØØØH ØD1Ø 3E21 MVI A,Ø21H ØD12 D3Ø1 OUT Ø1 ØD14 76 LOOP: HLT ØD15 C314ØD JMP LOOP ØD18 3E 55 TISR: MVI A,55H ØD1A D3ØØ OUT Ø	0 D0B	4Ø		DB	Ø4ØH
ØPØE E6 DB ØE6H ØDØF ØØ DB ØØØH ØD1Ø 3E21 MVI A,Ø21H ØD12 D3Ø1 OUT Ø1 ØD14 76 LOOP: HLT ØD15 C314ØD JMP LOOP ØD18 3E 55 TISR: MVI A,55H ØD1A D3ØØ OUT Ø	ØDØC	ØC		DB	ØØCH
ØDØF ØØ DB ØØØH ØDIØ 3E2I MVI A,Ø2IH ØDI2 D3ØI OUT ØI ØDI4 76 LOOP: HLT ØDI5 C3I4ØD JMP LOOP ØDI8 3E 55 TISR: MVI A,55H ØDIA D3ØØ OUT Ø	ØDØD	E6		DB	ØE6H
ØDIØ 3E2I MVI A,Ø2IH ØDI2 D3ØI OUT ØI ØDI4 76 LOOP: HLT ØDI5 C3I4ØD JMP LOOP ØDI8 3E 55 TISR: MVI A,55H ØDIA D3ØØ OUT Ø	ØPØE	E6		DB	ØE6H
ØD12 D3Ø1 OUT Ø1 ØD14 76 LOOP: HLT ØD15 C314ØD JMP LOOP ØD18 3E 55 TISR: MVI A,55H ØD1A D3ØØ OUT Ø	ØDØF	00		DB	øøøн
ØD14 76 LOOP: HLT ØD15 C314ØD JMP LOOP ØD18 3E 55 TISR: MVI A,55H ØD1A D3ØØ OUT Ø	ØDIØ	3E21		MVI	A,Ø21H
ØD15 C314ØD JMP L00P ØD18 3E 55 TISR: MVI A,55H ØD1A D3ØØ OUT Ø	ØD12	D3Ø1		OUT	Ø٦
ØD18 3E 55 TISR: MVI A,55H ØD1A D3ØØ OUT Ø	ØD14	76	LOOP:	HLT	
ØDIA D3ØØ OUT Ø .	ØD15	C314ØD		JMP	LOOP
	ØD18	3E 55	TISR:	MVI	A,55H
ODICE C364ØØ JMP IORET	ØD1A	D3ØØ		OUT	Ø.
	OD1 C:	C364ØØ		JMP	IORET

^{*} Note: This program is set up to run with a 4.0 monitor ROM.

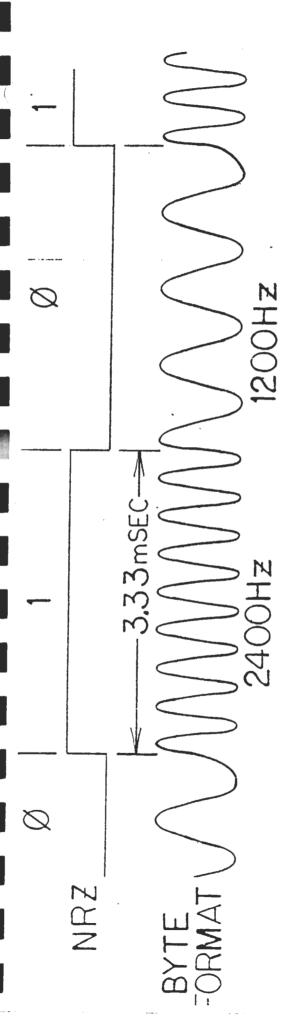
PolyMorphic Systems Byte/Biphase Cassette Interface

This program sets up the USART for Polyphase operation, and outputs a string of alternate ones and zeros. Run the program starting at address ØDØØ. Turn the Polyphase setup pot (R26) fully counterclock wise. Place your voltmeter on TP3 and turn the trimpot slowly clockwise until the voltage calculated in the first part of the procedure is reached. Be careful because there are two settings of the pot that will give you this value. The correct one is the one furthest counterclockwise. Check TP3 with the logic probe. It should be low with positive pulses. Check TP2. It should be half ones and half zeros. This completes the Polyphase setup procedure. Remove the temporary I to 10µF capacitor.

Note: The best final trim of both the Byte and Polyphase setup is to read data and adjust the appropriate potentiometer (R27 for Byte, R26 for Polyphase) one way and then the other, until errors result, then center the pot in the range found.

PLEASE READ THIS

To insure proper operation, read the Theory of Operation section thoroughly. This section contains important setup information.

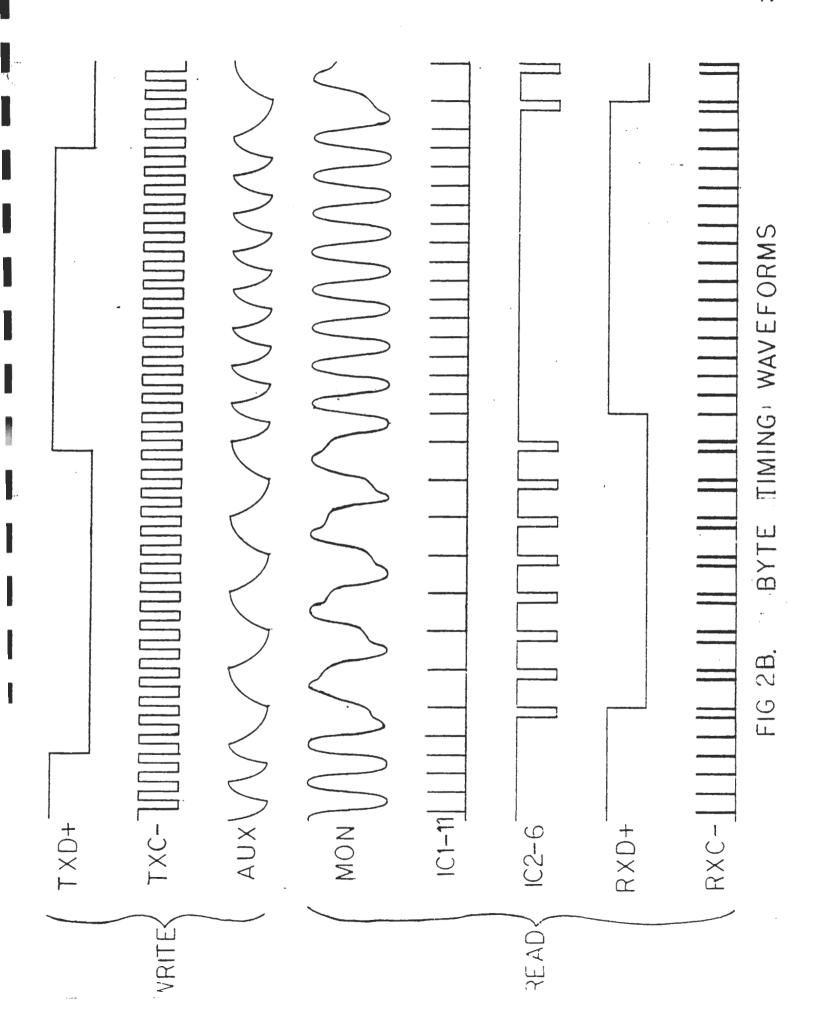

4. Theory of Operation.

The function of the byte standard cassette interface is to enable the recording and playback of digital data on average or better audio cassette recorders with the POLY 88 system using the Provisional Audio Cassette Data Interchange Standard as described in Byte Magazine (February, 1976, pp. 72 & 73).


This standard was developed to provide a common, reliable, and inexpensive means of software exchange and mass storage. It defines a character oriented, serial, frequency shift modulation method at a nominal transfer rate of 300 Baud. A logical one is defined as eight cycles of 2400 Hz and a logical zero as four cycles of 1200 Hz. A character consists of a start bit (a zero), eight data bits and two (or more) stop bits (ones). See figure 1b. Intervals between characters are unspecified amounts of time filled with one bits.

The POLY 88 system, controlled by its ROM monitor, outputs and inputs this character format through the serial port in NRZ (non-return to zero) form. It also provides a syncronized 16X clock, TXC- (16 clock cycles per bit = 4800 Hz) during output to the tape interface. The interface in the write mode must convert this NRZ data plus the clock to the Byte format and present this, at the proper level, to the AUX input of the recorder.

IC5, IC6, R14, R19, C7 and C12 accomplish this. When the data input (TXD+) is a one, IC5 forces the inputs to the first flop of IC6 to zero. Also TXD+ is applied to IC6's set terminal forcing its output to a one. This output is connected to the input of the second flop causing it to toggle with each rising clock edge. This action



F161a. NRZ and Byte format per bit.

divides the clock by two at the second flop's output creating 2400 Hz for the one level input. For a one bit, exactly eight cycles are produced because exactly 16 clocks are given. When TXD+ is a zero, the set is removed and the inputs are forced to one on the first flop. So the output of flop one is divided by two and the second flop divides by two again so its putput is 1200 Hz. For a zero input exactly four cylces are produced because 16 clocks were input. Resistors R14, and 19 form a resistive divider to reduce the 5V output of the flop to 500mV for the AUX input. C7 and C12 roll-off the high frequency components of the square wave output to better match the bandwidth of the recorder. Figure 2 shows the relationship between TXD+, TXC- and the signal for the AUX input to the recorder.

When reading data, the recorder output looks like the MON waveform shown in Figure 2B. This signal is adjusted to a nominal 2Vp-p with the volume adjust on the recorder. ICl, the 8T2O, is a bi-directional oneshot. It accepts analog inputs and, as configured here, outputs short pulses at each zero crossing (both positive and negative going). RI is a line termination resistor. R2, 7, 9 and 3 provide positive feedback to give a wide noise margin. R11 and C1 set the width of the output pulse. It is nominally 7004s. See Figure 2B, IC1-11 waveform. These pulses trigger IC2, a retriggerable one shot. It is set to a nominal 312 s (3/4 of the period of 1200 Hz zero's waveform). If ones are being received, IC2 gets a new trigger every 208 \mu s, so it is constantly retriggered and makes its output a constant one. If a zero is being received, it gets a new trigger every $416\,\mu$ s and therefore times out. This output is applied to IC3, a D flip-flop. Since this flop is clocked by the positive edge of ICl's output, ones are shifted through when 2400 Hz is being received and since its input is zero at each clock pulse during 1200 Hz, zeroes are output. IC3's output is now an NRZ reproduction of recording. It is buffered to the serial port by a multiplexor, IC4, as RXD+. It is also necessary to output 16 clocks per data bit back to the serial port. The negative

BLOCK DIAGRAM CASSETTE INTERFACE F16.10.

outputs of IC1 and IC2 are connected to the second one shot in IC2 in a manner that it produces a nominal 1μ s pulse for each IC1 pulse and each IC2 timeout. During the 1200 Hz zero 16 clocks are produced; eight from IC1 and eight from IC2. They are not evenly spaced but they do fill the requirements. This pulse train is buffered out to the RXC- line by a section of IC4. See Figure 28.

4.1 Address decoder

The address decoder is needed because there are two serial ports on the CPU board which share the USART and therefore can only be operated one at a time. The cassette interface is normally set to address Ø with its jumper selection. The monitor expects tape operations to be there. But the other serial port, address I may be implemented as a second cassette, therefore the need for the jumper.

The DS+ signal is the device select input. When the ADD jumper is installed, output is enabled for DS+ equal to zero. This allows the POLY 88 to software select one of two devices plugged into the serial port.

The address logic is part of IC5, a 74LS86 exclusive OR used as a comparator.

The address jumper (ADD) is normally connected through by a printed trace on the PC card. This forces a logic Ø on pin 12 of IC5, an exclusive OR gate. Cutting this trace causes pin 12 to be pulled up to a logic 1 level by resistor R22. The output of IC5 (pin 11) is the enable line for the cassette board. When at a logic 1 level the outputs of IC4 are tri-stated and the motor controls are disabled (IC7). A logic Ø will enable the board, placing

data on pin 2 of Jl, clock on pin 8 and logic Ø (ground) on pins 4 and 6 the clear to send and data set ready inputs to the USART. The cassette board is enabled when DS+ (device select) goes low if the ADD jumper is in place or high: if the jumper is removed.

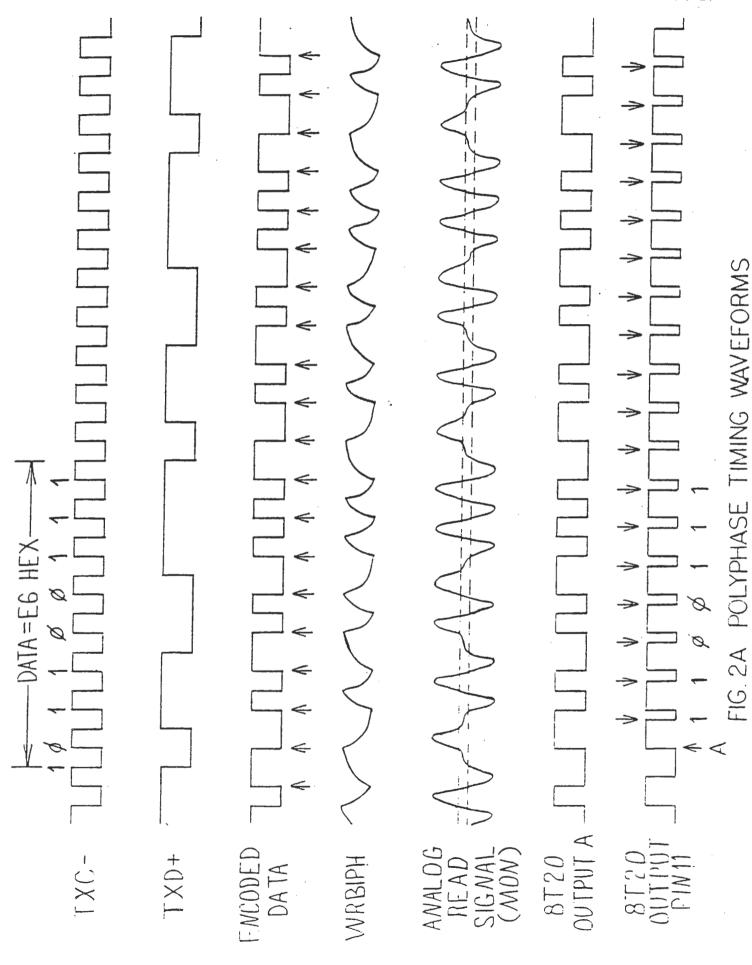
4.2 The Motor Control circuit IC7 takes the logic level USART outputs, Request to Send (RTS-) and Data Terminal Ready (DTR-), as controlled by the Monitor, and converts them to open collector current sink outputs. Write Motor Control (WMC-) and Read Motor Control (RMC-), which are directly capable of controlling the motor of the recorder used if it is of the type with a positive motor voltage source, and the remote jack between the motor and ground. The other recorder types described in Appendix A may be used with appropriate level shift circuitry or a relay. Attempted use of recorder types other than that described above will destroy the 75453 chip, IC7.

The 75453 driver has an open collector output which will sink 330ma and handle up to 30VDC.

Caution: See the appendix before connecting the motor control output to your recorder.

4.3 The Mode Select block switches the interface from the Byte Standard mode to the Polyphase mode. Jumper 1 controls the selection. A jumper installed puts the board in the Byte Standard mode (a jumper is printed on the solder side of the board when it is produced). No jumper puts the board in the Polyphase mode. The jumper connections are brought out to the recorder connector so that a switch may be installed at the recorder or a switch may be put on the Poly 88 backpanel in the hole over the video connector and wired to the jumper pads. A closed switch gives Byte and an open Polyphase.

The switch grounds the mode select line which causes the multiplexor to output the Byte output and Q1 to change the time constant of the A/D stage to the short value necessary for the Byte operation.


When the mode select line is shorted (logic \emptyset), transistor 01 will conduct (due to current flowing from the emitter through R4 to ground) causing resistor R26 to be shorted out. R26 is the polyphase timing adjustment and is not needed for Byte operation. When the mode select goes high (unshorted) Q1 ceases to conduct (base and emitter voltages are nearly equal) and R26 is switched into the circuit.

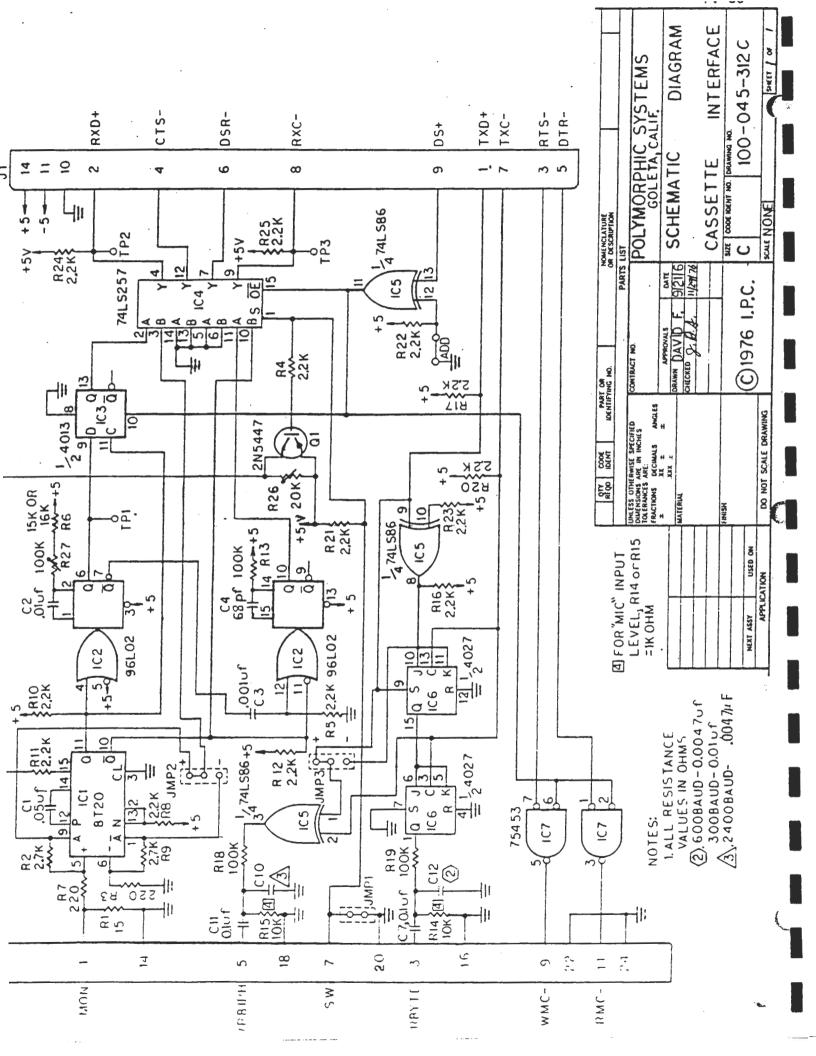
The multiplexor, IC5, is basically a four pole 2-position switch. 4.4 When pin 1 (mode select) is low for Byte, the "A" inputs (pins 2, 5, 11 14) are connected to the output and when high the "B" inputs (pins 3, 6, 10, 13) are connected. Pin 2 is Byte data and pin 11 Byte clock. Pins 3 and 10 are Polyphase data and clock, respectively. puts are tristate and are put in the high impedance state if the interface address is not selected. When it is selected by the address decoder, it also outputs a low active state for the Clear To Send (CTS-) and Data Set Ready (DSR-) control lines in both modes:

5. The Polyphase technique is the PolyMorphics implementation of Phase encoded (P.E.), or Biphase, or Manchester encoding scheme. It is more efficient than the Byte method in that it encodes each bit of information into one cycle length of the clock frequency. Therefore the necessary clock frequency is 1% the data rate. The USART in the POLY 88 CPU may be programmed to operate in this mode. The encoding rules are simple; a "one" bit is a cycle in phase with the clock a "zero" is a cycle 180 degrees out of phase with the clock. This is implemented by a single exclusive OR gate, section a of IC5, the 74LS86. Data is applied to pin 1 of IC5 and the clock to pin 2. When the data is low the clock is passed through IC5 without inversion. When pin 1 goes high the clock is complemented or shifted in phase 1800. JMP 3 is provided to invert the data using section C of IC5 (pin 8, 9, 10). supplied JMP 3 is wired to the + position. R15 should be 10K for most applications but if your recorder does not have an auxiliary input jack, R15 may be changed to 1000 ohms and used with the mircophone input. The auxiliary input should be used whenever possible as it produces the most reliable recordings. The waveshaping network (C10, C11, R15, R18) adjusts the TTL level out of IC5 to one compatible with the AUX input of the recorder, and filters out the high frequency components converting the wave form to a semi-sawtooth which fits the bandwidth of the recorder better.

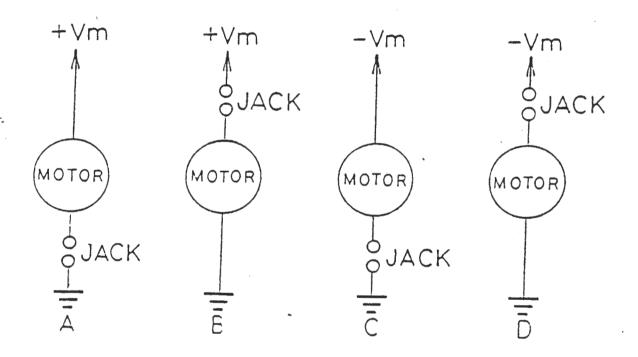
Here is the first place a higher quality recorder is required. It must have sufficient fidelity to record this waveform without excessive phase shift. 2400 Baud was chosen because it produces waveforms with 2400 and 1200 Hertz primary frequency components which are most nearly centered in the audio freq. range of most recorders. But lesser quality recorders have narrow bandwidths which introduce phase shift in the important harmonics which make it difficult to reproduce the original waveform with sufficient accuracy to produce error free recordings.

Upon read back, the MON output of the recorder is applied to the 8T2O, IC1. It is a bidirectional one-shot which will produce a timed pulse out for each zero crossing of the input. It also has an

PolyMorphic Systems Byte/Biphase Cassette Interface


output from the first analog comparator stage. By setting the timed output to 3/4 of the bit period. ICl will recover the clock with its negative going edge strobing the comparator output into the USART at the data level times. This is a sufficient set of inputs for the Poly 88 USART.

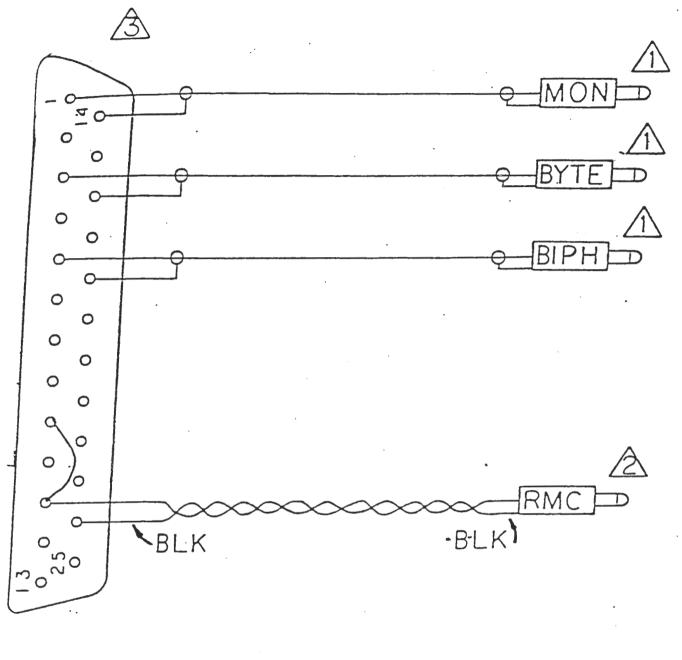
Going into more detail, R1 is a termination resistor to get rid of noise. R7, R2, R3 and R9 form a feedback circuit to cause hysteresis in IC1 to further increase noise margins. C1 and R11 plus pot R26 set the time constant for the one-shot. R26 needs to be adjusted for 3/4 of a bit period or 312 usec for 2400 Baud.

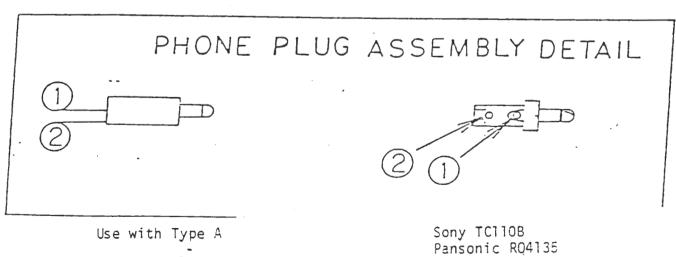

Looking at figure 2A we can see how the decoding process works. Each bit cell begins and ends with a transition. (Lines below encoded data delineate the bit cells.) If we send a long string of ones or zero's in biphase we end up with a 2400HZ square waves with in or out of phase with the original carrier. Two transitions occur during each bit cell with one exception - when we change from 1's to 0's. There is no transition in the middle of this bit cell. This can be used to synchronize the one-shot ICl. At the beginning of each data record in polyphase is a string of bytes containing hexidecimal E6. (See Fig. 2A). IC1 may trigger on any of the transitions but upon excounting a 1 to \emptyset transition can trigger only at the edge of a bit cell. (Point A in Fig. 2A) Thereafter it will trigger only at the edges of a cell because we have selected the period of the oneshot to time out 3/4 of the way through the bit cell. Thus transitions in the middle of the bit cell are ignored. We now have a reference with which to compare the phase of the signal we are decoding. The USART samples the polarity of the phase encoded data once every bit cell. This occurs on the trailing edge of the output of the oneshot. If a one has been recorded the signal will be positive at this point. If zero has been recorded the phase will be reversed and the signal will be negative at this point. The output of the voltage comparator (pin 1 or 9 of IC1) is high or low depending upon signal polarity and is fed into the USART data input.

Note that the decoding process is sensitive to the polarity of the signal. If in Fig. 2d, the polarity of the analog read signal was inverted the data recovered would also be inverted. Since we are using phase modulation to encode data the system is sensitive to phase inversions. Some recorders may invert the phase of signals when playing back while others don't. Jumper area 2 (JMP 2) is provided to remedy this situation. If the recorder you are using inverts phase on playback, the center pad of JMP 2 may be wired to the pad marked negative and the trace from the center to positive may be cut. This re-inverts the data. When the recording circuitry inverts the phase going to onto a tape, JMP 3 may be reconnected similarly. When JMP 2 and JMP 3 are configured properly data recorded on one cassette recorder may be interchanged between recorders as the polarity of the flux changes on the tape are all consistent.

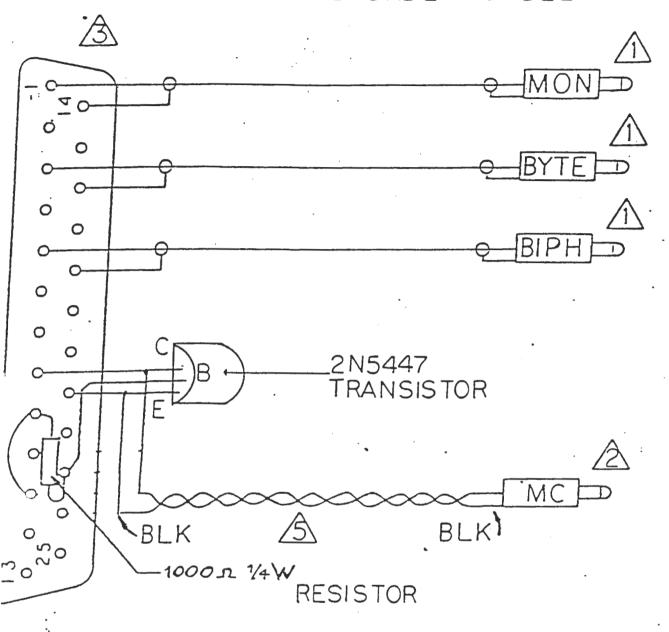
The Polyphase technique is controlled by the dumper program for recording and the loader in the monitor for playback. The format of the block structure is discussed in the monitor documentation.

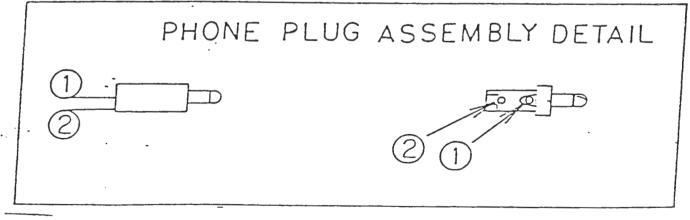
<u>Caution</u>; Before attempting to use the motor control, determine the circuit location of your remote switch jack. Only one configuration can be connected directly to the cassette interface motor control circuitry. You can use a direct connection if the motor supply voltage is positive and the jack is between the motor and ground (Figure A). The other three possible configurations require a buffer circuit consisting of resistors and a transistor or relay.




To determine which configuration your recorder employs, insert a shorted sub-miniature plug, put the recorder in the play mode, and measure the voltage between the plug and the recorder ground. You can usually trust the outside of the microphone jack (or MIC cable shield) to be ground. If the voltage is zero plus or minus a few millivolts, you have configuration A or C. If this is the case, separate the sub-miniature plug leads (remove the short) and measure the voltage on each lead -- one should be at ground; the other will be a positive or negative

voltage. A positive voltage indicates configuration A and a negative voltage indicates configuration C. If the initial measurement (shorted plug) yielded a positive voltage, your recorder uses configuration B. If the initial measurement yielded a negative voltage, your recorder uses configuration D.


The following three pictorial diagrams show suggested circuits for connection to the 4 different types of recorders.

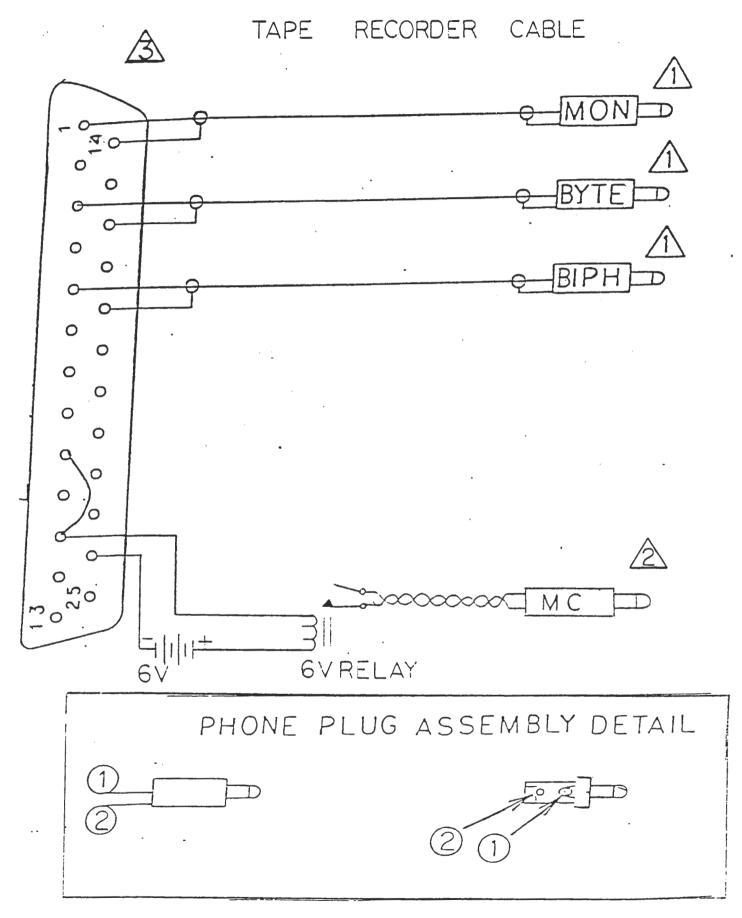

TAPE RECORDER CABLE

* See page six for model recommendations.

Use with Type A or B

Superscope Lius

' C104


Panasonic

799.21682501 R04135

Sony

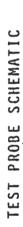
TC1105

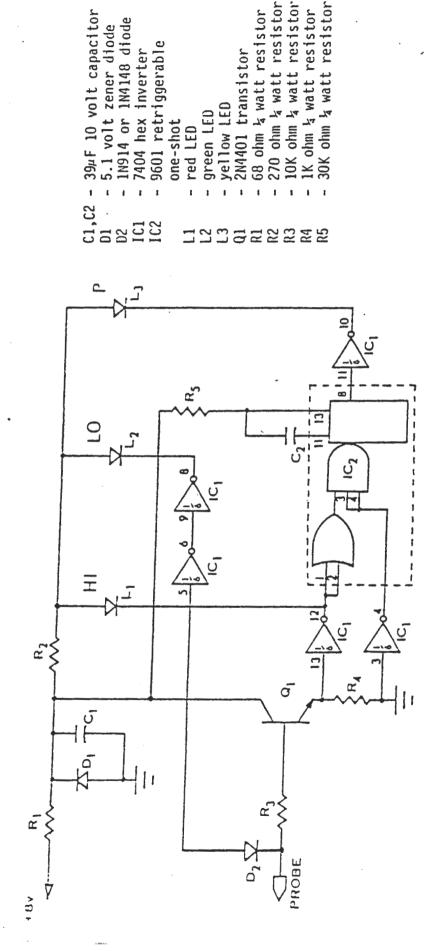
See page six for model recommendations

TYPE AB,C OR D RECORDER

If you have any questions about monitor commands for cassette usage, refer to the appropriate Poly 88 manual section.

Recorder controls must be set properly for reliable operation. The two controls of importance are TONE and VOLUME.

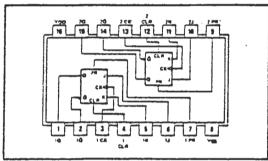

Tone Control. The tone control(s) must be set for flat response over the frequency range used by the interface. On most portable recorders with a single tone control, adjust the control to full treble. This keeps the treble circuit from clipping higher frequencies. With higher quality recorders having two or three tone controls, set all controls to the center of their range.


Volume control. The cassette interface input requires a nominal 2 volt p-p signal. At this level, the interface has sufficient input to recover the signal without clipping it.

The required volume setting varies from recorder to recorder. Todetermine the optimum setting for your recorder with an oscilloscope
find the setting for a 2 volt p-p signal at the speaker output
(labeled monitor output on some recorders). Use a prerecorded
digital tape. If you do not have access to an oscilloscope, you
must use a trial and error method. Start with a low volume setting
and try to read a prerecorded digital tape. If errors occur (question
mark on the screen), stop the tape and rewind it. Turn up the
volume control slightly and repeat until you can just recover data
without mistakes. Make note of this setting. Continue increasing
the volume in small steps as above until mistakes occur again.
Note this setting and use the setting half way between the two noted.

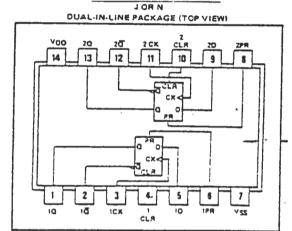
1N914 or 1N4148 diode

7404 hex inverter

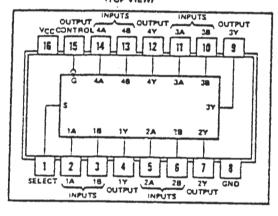

10K ohm 4 watt resistor 270 ohm 4 watt resistor

IK ohm 4 watt resistor

CHIP PINOUTS

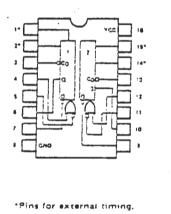

TF4027A, TP4027A

JORN DUAL-IN-LINE PACKAGE (TOP VIEW)



TF4013A, TP4013A

11 40134, 11 40134



SN54LS257, SN54S257...J OR W PACKAGE SN74LS257, SN74S257...J OR N PACKAGE ITOP VIEW)

CONNECTION DIAGRAMS DIP (TOP VIEW)

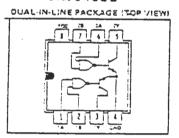
96L02

· vcc A 🗓 PEC [19 A× 8T20 Cieer 1 ⊡ ~× VEE . NEC NEC +IN T 11 +C× -IN ē VREF [GNO [ı A

SN74LS86

J. N. CR W PACKAGE ITOP VIEWI

VCC 44 M 47 M 15 77


14 13 12 11 N 3 1 1

14 13 12 11 N 3 1 1

A N 17 12 12 12 20

DOSITIVE TORICS Y 1 2 3 3 2 2 3 - A8

SN75453B

SMD is a simple absolute dumper which runs entirely within the onboard monitor RAM from C6AH to D9CH. Its starting address is C6A hex. When run, it clears the screen and expects an encoding specification and filename just as the 4.0 resident loader. After these are input, the starting and ending hex addresses are input as shown in the following example where the SMD is used to copy itself:

(Screen Cleared, Cursor in Upper Left)

В

SMD

C6A, D9D

(D9D used for safety)

C6A

D6 A

D6A

(This last is an endrecord)

(Screen clears again, ready for another dump)

Before data is dumped, the cassette recorder should be setup with the proper plug in the microphone jack. The Byte/Biphase cassette card has two plugs for writing - one for byte and one for biphase. The read plug (labelled usually "EAR" or "SPKR") should not be plugged in. Also make sure that enough tape runs before typing the final carriage return on the end address specification so that non-recordable leader gets a chance to pass by before dumping starts.

The onboard dumper was hand optimized to fit inside the free space on system RAM, but the system stack also resides there. This means that the stack may over-run the dumper, erasing part of it. If the dumper has been in RAM while BASIC has been run, for example, the stack has probably squashed it at some time. If there is doubt, check the byte at D99H. It should be a C9 (return instruction). If it is not, or you just want to make sure, reload the dumper just before using it.

When the dumper is dumping, each record will be displayed as a hex number on the screen. The hex number represents the address of the data being dumped on each record. That address is put on the header of the record so the 4.0 resident loader will know where to put it when it is read back in.

The last record is an "END" type record. It is put on automatically. It will display as a record with dump address equal to the address of the record before it. Optimization of the dumper's code requires some strangeness such as this, but in any case, the last record (dump finished) will be signaled by the screen clearing. This puts the dumper back in its initial mode, just as if it had been restarted at C6AH. More data may be dumped if desired.

```
****** ONEOARD DUMPER FOR 4.0 ******
                        THIS IS A POLYFORMAT DUMPER FOR ABSOLUTE
               ; DATA WHICH RUNS FROM C6A TO D9F (OR SO), START ADDRESS
               ;C6AH. WHEN RUN, IT ACTS LIKE 4.0 MONITOR TAPE LOAD IN
               THE WAY IT ACCEPTS ENCODING SPECIFICATION (B OR P) AND
               ; FILE NAME.
                             THEN IT EXPECTS TWO HEX NUMBERS FOR
               ;START AND END DUMP ADDRESSES.
                                                EACH RECORD DUMPED SHOWS
                                                 WHEN DONE, IT PUTS OUT
               ; ADDRESS USED IN HEX ON SCREEN.
               ; AN "END" TYPE RECORD AND CLEARS SCREEN, READY
               FOR ANOTHER DUMP.
               ORIGINAL 2.2 DUMPER SYSTEM WRITTEN BY DAVID FAIMAN
               REWRITTEN, DOCUMENTED AND CONVERTED TO ONBOARD FOR 4.0
               BY R.L.DERAN
ØC2Ø
                                0C20H
               WHØ
                        EQU
ØC24
                        EQU
                                ØC24H
               WHI
2C16
               SRA4
                        EQU
                                ØC16H
Ø2AD
               SETUP
                        EQU
                                Ø2ADH
Ø3AA
               HEXC
                        EOU
                                Ø3AAH
Ø3D1
               DEOUT
                        EQU
                                03D1H
ØC5A
                       ORG
                                ØCSCH-2
ØC5A
               LENGTH: DS
                                2
ØC5C
               WNAME:
                                8
                       DS
                                2
ØC64
               WRN:
                       DS
ØC66
               WLEN:
                                1
                       DS
                                2
ØC67
               WADR:
                       DS
ØC69
               WTYPE:
                                1
                       DS
0C6A 21450D
               START:
                       LXI
                                H,TISR
0C6D 22160C
                       SHLD
                                SRA4
ØC7Ø 3EØC
               STAR2:
                       MVI
                                A, ØCH
                                         ; FORM FEED
0C72 CD240C
                       CALL
                                WHl
                                         ;CLEAR SCREEN
9C75 CD299C
                       CALL
                                WHØ
ØC78 CD24ØC
                       CALL
                                WHI
ØC7B FE42
                       CPI
                                'B'
ØC7D CA92ØC
                       JZ
                                BITE
ØC80 FE50
                       CPI
                                'p'
0C32 C2700C
                       JNZ
                                STAR2
ØC85 CDADØ2
               POLY:
                       CALL
                                SETUP
ØC88 Ø5
                       DB
                                005H
0C89 AA
                       DB
                                ØAAH
3C8A 40
                       DB
                                Ø 4 9 H
2C8B 2C
                       DB
                                JOCH
ØCSC E6
                       DB
                                ØE6H
ØC8D E6
                       DB
                                ØE6H
ØC8E Ø3
                       DB
                                333H
9C8F C39A0C
                       JMP
                                NAMER
ØC92 CDADØ2
               BITE:
                       CALL
                                SETUP
ØC95 Ø6
                       DB
                                03EH
3C96 AA
                       DB
                                BAAB
2C97 43
                       DB
                                3433
```

```
2C98 CE
                       DB
                                ØCEH
 0C99 00
                       DB.
                                000H
                       NAMEING ROUTINE
               NAMER: LXI
 0C9A 210000
                              H,Ø
 ØC9D 2264ØC
                       SHLD
                              WRN
                            C,8 ;BLANK NAME FIELD
H,WNAME+7
M,020H
H;BACKUP H TO WNAME
 ØCAØ ØEØ8
                      IVM
 ØCA2 2163ØC
                      LXI
                    MVI
 ØCA5 362Ø
             NAM:
 ØCA7 2B
ØCA8 ØD
                       DCX
                       DCR
                              С
 ØCA9 C2A5ØC
                       JNZ
                              NAM
 ØCAC 23
                       INX
                               H
 GCAD GEG8
                       IVM
                              C,8
 ØCAF CD189D
                      CALL
                               CRLF
 ØCB2 CD2ØØC
              NAMØ: CALL
                               WHØ
 ØCB5 CD24ØC
               CALL
                               WHI
 ØCB8 FEØD
                      CPI
                              ØØDH
                                       ;CR
 ØCBA CAC3ØC
                      JZ
                              DUMPC
ØCBD 77
                      MOV
                             M,A
ØCBE 23 .
                      INX
ØCBF ØD
                      DCR
ØCCØ C2B2ØC
                       JNZ
                              NAMO
ØCC3 AF
               DUMPC: XRA
0CC4 32690C
0CC7 CD180D
                      STA
                              WTYPE
                      CALL
                              CRLF
OCCA CDAA03 SIZE: CALL
                              HEXC
ØCCD 22670C
                             WADR
                     SHLD
ØCDØ 78
                      VOM
                              A,B
ØCD1 CD24ØC
                      CALL
                              WHI
ØCD4 EB
                      XCHG
OCD5 CDAA03
                      CALL
                             HEXC
0CD8 CD180D
                      CALL
                              CRLF
ØCDB 7D
                      VOM
                              A,L
ØCDC 93
                      SUB
                              E
3CDD 6F
                     VOM
                             L,A
ØCDE 7C
                     VOM
                              A,H
OCDF 9A
                     SBB
                              D
ICEI 67
                     VOM
                             H,A
ØCE1 225AØC
                 SHLD
                             LENGTH
              CALL ENDC: MVI STA
GCE4 CDF6GC
                             DUMPR
ØCE7 3EØ2
                              A, 2
ØCE9 3269ØC
                              WTYPE
ØCEC 3D
                      DCR
                              A
ØCED 3266ØC
                     STA
                              WLEN
OCFO CD540D
                     CALL
                              DUMP
GCF3 C36AGC
                      JMP
                              START
                    DUMP DATA RECORDS
ØCF6 215BØC
              DUMPR: LXI
                              H, LENGTH+1
9CF9 7E
                     MOV
                              N, A
ØCFA B7
                     ORA
                              A
SCFB CA100D
                     JZ
                              CVER
GCFE 35
                     DCR
                              M
GCFF AF
                     XRA
@DØØ 3266@C
                     STA
                              WLEN
```

```
ØDØ3 CD54ØD
                       CALL
                               DUMP
0D06 2A670C
                       LHLD
                               WADR
ØDØ9 24
                       INR
0D0A 22670C
                       SHLD
                               WADR
ØDØD C3F6ØC
                       JMP
                               DUMPR
ØDlØ 2B
              OVER:
                       DCX
ØD11 7E
                       MOV
ØD12 3266ØC
                       STA
                               WLEN
ØD15 C3540D
                       JMP
                               DUMP
ØD18 3EØD
              CRLF:
                       IVM
                               A.ØDH
0DlA CD240C
                       CALL
                               WH1
ØDID C9
                       RET
              ;
                       ROUTINE TO OUTPUT A RECORD
              ;
              PUT:
ØD1E Ø6ØØ
                      IVM
                               B.0
                                      :CLEAR CHECKSUM
0D20 4F
                               C,A
                                      ; PUT LENGTH OF RECORD IN C
                      VOM
ØD21 7E
ØD22 23
              PUTØ:
                      VOM
                               A.M
                       INX
                               H
0D23 F5
                      PUSH
                               PSW
ØD24 80
                      ADD
                               В
ØD25 47
                      MOV
                               B,A
ØD26 F1
                      POP
                               PSW
ØD27 CD340D
                      CALL
                               TO
ØD2A ØD
                      DCR
ØD2B C2210D
                      JNZ
                               PUTØ
ØD2E 78
                      VOM
                               A,B
ØD2F 2F
                      CMA
0D30 3C
                      INR
ØD31 C334ØD
                      JMP
                               TO
              ;
                      TAPE OUTPUT ROUTIME
ØCØ8
              TBUFF
                      EQU
                               ØCØ8H
ØD34 E5
              TO:
                      PUSH
                               H
ØD35 21080C
                      LXI
                               H, TBUFF
ØD38 F5
                      PUSH
                               PSW
ØD39 7E
              TO1:
                      VOM
                               A,M
0D3A B7
                      ORA
                               A
ØD3B C239ØD
                      JNZ
                               TO1
0D3E 23
                      INX
ØD3F F1
                              PSW
                      POP
0D40 77
                      VOM
                             M,A
ØD41 2B
                      DCX
                              H
ØD42 34
                      INR
                              M
ØD43 E1
                      POP
                               H
ØD44 C9
                      RET
                      TISR IS A SIMPLE USART READER WHICH WILL
                      RE-TRANSMIT THE CHARACTER IN TBUFF IF IT HAS NOT
                      BEEN REPLACED BY THE WORMHOLE ROUTINE. IT
                      DOES NOT CHECK THE FLAG, BECAUSE IT ASSUMES
                      THAT THE PROGRAM CALLING THE WORMHOLE IS FASTER
                      THAN THE USART AND SO IT ALWAYS HAS A VALID
                      CHARACTER FOR US TO TAKE.
0D45 AF
              TISR: XRA
                               Α
```

```
ØD46 32Ø8ØC
                      STA
                              TBUFF
ØD49 3AØ90C
                      LDA
                              TBUFF+1
ØD4C D3ØØ
                      OUT
                              Ø
              IORET: POP
                              H
ØD4E El
                     POP
ØD4F D1
ØD5Ø C1
                     POP
                              В
                     POP
                             PSW
ØD51 F1
0D52 FB
                     ΕI
                     RET
ØD53 C9
                     DUMP PUTS OUT ONE COMPLETE RECORD.
                    IT TURNS ON USART AND MOTORS, WAITS A WHILE
                    FOR AN IRG, PUTS OUT 64 SYNCH CHARACTERS,
                    DUMPS A RECORD ACCORDING TO THE WRITE CONTROL
                     BLOCK AT WNAME (IT ALSO PUTS THE WCB
                     ON THE RECORD AS HEADER), INCREMENTS THE RECORD
                     NUMBER, STOPS USART AND MOTORS, AND RETURNS.
ØD54 3E21
             DUMP: MVI
                             A, Ø21H
                             1
ØD56 D3Ø1
                     OUT
                     LHLD
ØD58 2A67ØC
                             WADR
                     XCHG
ØD5B EB
0D5C CDD103
                     CALL
                             DEOUT ; DISPLAY THE ADDRESS WE'RE DUMPI
2D5F CD180D
                    CALL
                             CRLF
ØD62 21FF8F
                             H,08FFFH
                    LXI
ØD65 2B
             DELAY: DCX
                             H
ØD66 7C
                     MOV
                             A,H
ØD67 B7
                     ORA
                             Α
                     JNZ
                             DELAY
ØD68 C2650D
0D6B 0E40
                             C.64
                     MVI
ØD6D 3EE6
                     IVM
                             A, 0E6H ; SYNC CHARACTER
ØD6F CD34ØD DUMPØ: CALL
                             TO
0D72 0D
                     DCR
0D73 C26F0D
                     JNZ
                             DUMPØ
ØD76 3EØ1
                     MVI
                             A.ØØlH
                                    START OF HEADER
ØD73 CD34ØD
                     CALL
                             TO
              ;
                     DUMP HEADER AND DATA RECORDS
ØD7B 3EØE
                     MVI
                             A, ØØEH ; LENGTH OF HEADER RECORD
@D7D 215C@C
                     LXI
                             H.WNAME
ØD8Ø CD1EØD
                     CALL
                             PUT
ØD83 3A66ØC
                     LDA
                             WLEN
ØD86 2A67ØC
                     LHLD
                             WADR
ØD89 CD1EØD
                     CALL
                             PUT
0D8C 21640C
                             H.WRN
                     LXI
                             M
9D8F 34
                     INR
             OFF:
0D90 AF
                     XRA
ØD91 CD340D
                     CALL
                             TO
                                     ;THESE PUSH OUT LAST BYTES FROM
                                    ;THE USART AND WH BUFFER PIPELIN
0D94 CD340D
                     CALL
                             TO
ØD97 CD340D
                     CALL
                             TO
                                    TURN OFF MOTOR AND TRANSMITTER
ØD9A D3Ø1
                     OUT
                             1
0D9C C9
                     RET
0000
                     END
```

SOFTWARE USER FEED BACK

How received?	
	Purchased from dealer Dealer Name?
	By mail factory direct
	Other
How much memor	ry do you have on your system?K
. How much do yo	ou expect to have?
In six month	nsK l yearK ultimatelyK
How would you	rate yourself as a computer user?
	Just starting
	Beginner
	Intermediate
	Wizard
	I remember the 650
Do you program	primarily in BASIC Ass'y Language
About how many How would you	lines is one of your average programs?
How would you	rate the time used on your machine for the following:
% Games	% Maintenance% Building programs Other
How would you o	compare this program to others on the market?
	Data and Allera
	Better than most
	As good as most
What additional	As good as most

• . .